Lesson 1 - Final Control Elements in Process Loops

Topics:

Compensation; Feedback loops; Performance effects of disturbances; Final control subsystem parts; Amplifiers; Digital signals

Learning Objectives:
– Discuss the function of final control elements in process loops.
– Explain how an actuator is used with the final control element.
– Discuss the effect of a disturbance on the performance of a process loop.
– Describe the three parts of a final control element subsystem.
– Discuss the differences between electric and fluidic control signals in the operation of final control elements.


Lesson 2 - Electric Actuators

Topics:

Solenoids; Solenoid-operated valves; DC and AC motors; Three-phase and single-phase induction motors; Stepper motors; Relay systems; PLCs

Learning Objectives:
– Describe the operation of a solenoid with a valve.
– Name the basic components of dc and ac electric motors and explain how they work.
– Discuss the advantages of universal motors and stepper motors.
– Explain how an electromechanical relay works.
– Name at least three kinds of relays in use today and give typical applications for them.
– Discuss the applications and advantages of programmable logic controllers.


Lesson 3 - Pneumatic and Hydraulic Actuators

Topics:

Effects of changing pressure and temperature; Diaphragm, piston and hydraulic actuators; Mechanical advantage; One- and two-way systems

Learning Objectives:
– Describe the basic principles of operation for both pneumatic and hydraulic actuators.
– Discuss the relationships among pressure, temperature, and volume in a pneumatic system.
– Compare the operation of direct- and reverse-acting actuators.
– Describe the major components of a simple hydraulic system.
– Discuss the characteristics of proper hydraulic fluid and describe elements of hydraulic system maintenance.


Lesson 4 - Control Valves

Topics:

Valve components and characteristics; Globe, cage, butterfly, ball, sliding-gate, diaphragm, split-body, proportional/servo, and other valves

Learning Objectives:
– Describe the components of a control valve.
– Compare the operation and advantages of globe, cage, butterfly, ball, sliding-gate, diaphragm, and split-body valves.
– Discuss the operation, advantages, and disadvantages of proportional/servo valves.
– Explain the differences in linear, quick-opening, and equal-percentage flow characteristics.
– Discuss mechanical requirements for valves and valve actuator requirements.
– Explain the relationship of flashing and cavitation to proper control valve selection.


Lesson 5 - Final Control Element Applications

Topics:

Feedwater and turbine control systems; Sequential and automatic valve control; Control and block valves; Robotic systems

Learning Objectives:
– Describe the sequential valve control used in a typical feedwater control system.
– Describe a typical relay logic system.
– Discuss the use of limit switches for automatic valve control.
– Describe the operation of a hydraulic fluid supply system for a turbine generator.
– Describe the operation of an industrial robotic system.