Free Webinar

"The Future of Industrial Training: the New Digital Classroom"

About the Webinar:
At TPC Training Systems, we’ve been on the hunt for ways that our industrial skills training solutions can evolve to meet the needs of all of our customers, and we’ve learned some things in the process. In this webinar, we’ll share what we’ve learned and give you a preview of the future of industrial training.

You’ll learn about:
  • The best uses of webcast and simulcast training formats
  • The advantages of blended online and live training
  • Virtual reality (VR) training environments, including an exclusive sneak peek inside a VR simulation

  • Menu
    Electrical Measuring Instruments

    Electrical Measuring Instruments

    Covers the maintenance procedures and principles on which electrical test instruments operate. Basic instruments covered in this online course include voltmeter, ammeter, wattmeter, ohmmeter, and megohmmeter. Covers AC metering, split-core ammeter, use of current and potential transformers. Includes detailed coverage of modern multimeters. Explains functions and uses of oscilloscopes. Electrical Measuring Instruments is available in online and course manual formats.

    TPC Training Systems is authorized by IACET to offer 0.5 CEUs for this program.

    Review a full course list for Electrical and Instrumentation Technician

    Select Format

    • Online Course & Test $85.00
    • Course Manual $57.00
    • Course Manual (Spanish) $57.00

    Please select a format.

    Lesson 1 - Principles of Meter Operation


    Digital meter design; Integrated ADCs; Displays; Introduction to analog meters; D'Arsonval movement; Magnetic shielding; Parallax error; Accuracy

    Learning Objectives:
    – Define the terms digital meter and analog meter.
    – Describe the purpose of the analog-to-digital converter in a digital meter.
    – Identify and label graphs of integrator output from a dual-slope integrating meter.
    – Explain how time is related to voltage measurement in an integrating digital meter.
    – Differentiate among the terms accuracy, sensitivity, and resolution.
    – Explain how a D'Arsonval meter movement works.
    – Describe the parallax effect, and explain how to avoid it when using an analog meter.
    – State the sensitivity formula for an analog meter.

    Lesson 2 - Ammeters, Voltmeters, and Wattmeters


    Measurement considerations; Measuring direct current; Multirange ammeters; Measuring alternating current; Voltmeters; Wattmeters

    Learning Objectives:
    – Describe the differences and similarities between an analog ammeter and a voltmeter.
    – Explain how ammeters and voltmeters are protected internally from overcurrent.
    – Explain how a make-then-break switch works.
    – Identify which meters should be connected in series in a circuit and which should be connected in parallel.
    – Describe how an analog wattmeter works.
    – Explain how it is possible to overload a wattmeter, even with the meter's pointer at less than full-scale deflection.

    Lesson 3 - Resistance Measurement


    Measuring resistance with an ohmmeter; Checking and calibrating an ohmmeter; Shunt ohmmeters; Megohmmeters

    Learning Objectives:
    – Characteristic differences between a series ohmmeter and a shunt ohmmeter.
    – Explain why ohmmeter scales read from right to left, instead of left to right, and why they are nonlinear.
    – Describe the internal circuits and basic operation of an opposed-coil megohmmeter.
    – State the primary safety precaution to take when using an ohmmeter.
    – Describe two methods used by ohmmeter manufacturers to extend the range of their instruments.
    – Explain how to test for opens, shorts, and grounds, using a megohmmeter.
    – Describe how to make zero-adjustments on ohmmeters and megohmmeters.
    – Explain why variable resistors are needed in battery-powered ohmmeters.

    Lesson 4 - Multimeters


    Graphical DMM; Advanced meter functions; Multimeter accessories and safety

    Learning Objectives:
    – Demonstrate how to measure ac and dc current and voltage with a multimeter.
    – Describe the function of a current probe.
    – Explain how to isolate the source of a glitch with a graphical multimeter.
    – Demonstrate how to read the screen display of a graphical multimeter in the Trend mode.
    – Explain why you set a meter to its highest range before taking your first measurement.
    – Define autoranging and auto-polarity.
    – List three safety precautions to take when using multimeters.

    Lesson 5 - Oscilloscopes


    Kinds of oscilloscopes; Triggering; Digital oscilloscopes; Dual-trace oscilloscopes; Controls; Probes; Oscilloscopes in troubleshooting

    Learning Objectives:
    – Describe how an analog oscilloscope works.
    – Describe advantages of a digital oscilloscope over an analog oscilloscope.
    – Demonstrate how to measure voltage with an oscilloscope.
    – Show two methods of determining phase angles with an oscilloscope.

    © Copyright 2017 TPC Training SYSTEMS. All rights reserved